9.2 Procedure of Troubleshooting

Indoor Unit

1. Malfunction of Temperature Sensor F1, F2

Main detection points:

- Is the wiring terminal between the temperature sensor and the controller loosened or poorly contacted?
- Is there short circuit due to trip-over of the parts?
- Is the temperature sensor broken?
- Is mainboard broken?

Malfunction diagnosis process:

2. Malfunction of Blocked Protection of IDU Fan Motor H6

3. Malfunction of Protection of Jumper Cap C5

Main detection points:

- Is there jumper cap on the mainboard?
- Is the jumper cap inserted correctly and tightly?
- The jumper is broken?
- The motor is broken?
- Detection circuit of the mainboard is defined abnormal?

Malfunction diagnosis process:

4. Communication Malfunction E6

Outdoor Unit

09K/12K

1. Capacity charging malfunction (outdoor unit malfunction) (AP1 below means control board of outdoor unit) Main detection points:

- Detect if the voltage of L and N terminal of XT wiring board is between $210 \mathrm{VAC}-240 \mathrm{VAC}$ by alternating voltage meter;
- Is reactor (L) well connected? Is connection wire loosened or pulled out? Is reactor (L) damaged?

2. IPM protection(H5), desynchronizing malfunction(H7), overcurrent of compressor phase current (P5) (AP1 below means

 control board of outdoor unit)Main detection points:

- Is voltage input within the normal range
- If the control board AP1 is well connected with compressor COMP? If they are loosened? If the connection sequence is correct?
- Heat exchange of unit is not good (heat exchanger is dirty and unit radiating environment is bad);
- If the system pressure is too high?
- If the refrigerant charging amount is appropriate?
- If coil resistance of compressor is normal? Is compressor coil insulating to copper pipe well?
- If the work load of unit is heavy? If radiating of unit is good?

Malfunction diagnosis process:

3. High temperature and overload protection (E8)(AP1 below means control board of outdoor unit)

 Main detection points:- If the outdoor ambient temperature is in normal range;
- If the indoor and outdoor fan are running normally;
- If the radiating environment of indoor and outdoor unit is good.

4. Start-up failure (LC) (AP1 below means control board of outdoor unit)

Main detection points:

- If the compressor wiring is correct?
- If the stop time of compressor is sufficient?
- If the compressor is damaged?
- If the refrigerant charging amount is too much?

5. Overload and high discharge temperature malfunction Main detection points:

- If the electronic expansion valve is connected well? Is the electronic expansion valve damaged?
- If the refrigerant is leaked?
- The compressor overload protection terminal is not connected well with the mainboard?
- If the overload protector is damaged?
- Heat exchange of unit is not good? (heat exchanger is dirty and unit radiating environment is bad)
- Too much load of the system causes high temperature of compressor after working for a long time?
- Malfunction of discharge temperature sensor?

6. PFC (correction for power factor) malfunction (outdoor unit malfunction)

Main detection points:

- Check if power plug is connected well with the socket
- Check if the reactor of outdoor unit is damaged?

Malfunction diagnosis process:

7. Communication malfunction (E6)

Main detection points:

- Check if the connection wire and the built-in wiring of indoor and outdoor unit are connected well and without damage;
- If the communication circuit of indoor mainboard is damaged? If the communication circuit of outdoor mainboard (AP1) is damaged?

Malfunction diagnosis process:

18K

1. Key detection point

Test NO	Test point	Corresponding component	Test value under normal condition
Test 1	Between A and C	Neutral and live wires	$160 \mathrm{~V} \sim 265 \mathrm{~V}$
Test 2	Between B and C	Neutral and live wires	160V~265V
Test 3	Between D and E	DC busbar electrolytic capacitor	DC 180V~380V
Test 4	Between F and G	Electrolytic capacitor of power	DC 180V~380V
Test 5	Two ends of diode D15	D15(IPM modular +15V power supply)	DC 14.5V~15.6V
Test 6	Two ends of electrolytic capacitor C715	C715(+12V power supply)	DC 12V~13V
Test 7	Two ends of electrolytic capacitor C710	C710(+5V power supply)	DC 5V
Test 8	Two ends of electrolytic capacitor C226	C226(+3.3V power supply)	DC 3.3V
Test 9	Two ends of chip capacitor C912	C912(+17V power supply)	DC 15V~18V
Test 10	Between M to GND	Point M of R75 to ground (signal sending port of ODU)	Fluctuate between 0~3.3V
Test 11	Between N to GND	Point N of R123 to ground (signal receiving port of ODU)	Fluctuate between 0~3.3V
Test 12	Between S and T	Power supply of communication ring	DC 56V

2. Capacity charging malfunction (outdoor unit malfunction) (AP1 below is control board of outdoor unit)

Main detection point:

- Detect if the voltage of L and N terminal of wiring board is between 210AC-240AC by alternating voltage meter;
- Is reactor (L) well connected? Is connection wire loosened or pull-out? Is reactor (L) damaged?

Malfunction diagnosis process:

3. IPM protection, desynchronizing malfunction, phase current of compressor is overcurrent (AP1 below is control board of outdoor unit)

Main detection point:

- If control board AP1 and compressor COMP is well connected? If they are loosened? If the connection sequence is correct?
- Is voltage input in the normal range (Test the voltage between L, N of wiring board XT by DC voltage meter)?
- If coil resistance of compressor is normal? Is compressor coil insulating to copper pipe well?
- If the work load of unit is heavy? If radiating of unit is well?
- If the refrigerant charging is appropriate?

Malfunction diagnosis process:

4. Diagnosis for anti-high temperature, overload protection (AP1 below is control board of outdoor unit)

Main detection point:

- If the outdoor ambient temperature is in normal range;
- If the indoor and outdoor fan is running normal;
- If the radiating environment of indoor and outdoor unit is well.

Malfunction diagnosis process:

5. Diagnosis for failure start up malfunction (AP1 below is control board of outdoor unit)

Main detection point:

- If the compressor wiring is correct?
- If the stop time of compressor is enough?
- If the compressor is damaged?
- If the refrigerant charging is too much?

Malfunction diagnosis process:

6. Diagnosis for compressor synchronism (AP1 below is control board of outdoor unit)

Main detection point:

- If the system pressure is over-high?
- If the work voltage is over-low?

Malfunction diagnosis process:

7. Diagnosis for overload and discharge malfunction (AP1 below is control board of outdoor unit)

Main detection point:

- If the electron expansion valve is connected well? Is the expansion valve damaged?
- If the refrigerant is leakage?
- If the overload protector is damaged?

Malfunction diagnosis process:

8. PFC (correction for power factor) malfunction (outdoor unit malfunction) (AP1 below is control board of outdoor unit)

Main detection point:

- Check if reactor (L) of outdoor unit and PFC capacity are damaged.

Malfunction diagnosis process:

9. Communication malfunction (AP1 below is control board of outdoor unit)

Main detection point:

- Check if the connection wire and the built-in wiring of indoor and outdoor unit is connected well and no damaged;
- If the communication circuit of indoor mainboard is damaged? If the communication circuit of outdoor mainboard (AP1) is damaged

Malfunction diagnosis process:

10. Diagnosis process for outdoor communication circuit

Service Manual

11. Malfunction of Overcurrent Protection E5

Main detection points:

- Is the supply voltage unstable with big fluctuation?
- Is the supply voltage too low with overload?
- Hardware trouble?

Malfunction diagnosis process:

